Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(24): 244506, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778092

RESUMO

Providing a physically sound explanation of aging phenomena in non-equilibrium amorphous materials is a challenging problem in modern statistical thermodynamics. The slow evolution of physical properties after quenches of control parameters is empirically well interpreted via the concept of material time (or internal clock) based on the Tool-Narayanaswamy-Moynihan model. Yet, the fundamental reasons of its striking success remain unclear. We propose a microscopic rationale behind the material time on the basis of the linear laws of irreversible thermodynamics and its extension that treats the corresponding kinetic coefficients as state functions of a slowly evolving material state. Our interpretation is based on the recognition that the same mathematical structure governs both the Tool model and the recently developed non-equilibrium extension of the self-consistent generalized Langevin equation theory, guided by the universal principles of Onsager's theory of irreversible processes. This identification opens the way for a generalization of the material-time concept to aging systems where several relaxation modes with very different equilibration processes must be considered, and partially frozen glasses manifest the appearance of partial ergodicity breaking and, hence, materials with multiple very distinct inner clocks.

2.
J Phys Condens Matter ; 34(8)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34798621

RESUMO

The recently developed non-equilibrium self-consistent generalized Langevin equation theory of the dynamics of liquids of non-spherically interacting particles [2016J. Phys. Chem. B1207975] is applied to the description of the irreversible relaxation of a thermally and mechanically quenched dipolar fluid. Specifically, we consider a dipolar hard-sphere liquid quenched (attw= 0) from full equilibrium conditions towards different ergodic-non-ergodic transitions. Qualitatively different scenarios are predicted by the theory for the time evolution of the system after the quench (tw> 0), that depend on both the kind of transition approached and the specific features of the protocol of preparation. Each of these scenarios is characterized by the kinetics displayed by a set of structural correlations, and also by the development of two characteristic times describing the relaxation of the translational and rotational dynamics, allowing us to highlight the crossover from equilibration to aging in the system and leading to the prediction of different underlying mechanisms and relaxation laws for the dynamics at each of the glass transitions explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...